My research interests lie in the reconstruction of ice sheets, and how they influence and interact with the landscape, environment and subsurface.

In iC3, I co-lead a team with the aim to transform scientific understanding of carbon cycling processes under ice sheets and produce the first comprehensive inventory of sub-ice sheet carbon.

Sailing through sea ice in the northern Barents Sea (Credit: Henry Patton)

Some recent publications

Glacial erosion and Quaternary landscape development of the Eurasian Arctic

(Earth-Science Reviews)

ABSTRACT Multiple ice age cycles spanning the last three million years have fundamentally transformed the Arctic landscape. The cadence and intensity of this glacial modification underpin the stability of Arctic geosystems over geologic time scales, including its hydrology, circulation patterns, slope stability, hydrocarbon fluid flow, geochemical/sediment cycling and nutrient supply.

The Barents Shelf provides a unique arena to investigate long-term landscape evolution as it has undergone significant glacial modification during the Quaternary and has an extensive stratigraphic data repository motivated by decades of hydrocarbon seismic and well exploration. Here, we assimilate new geological datasets with ice sheet erosion modelling to incrementally reconstruct the geomorphic evolution of the Eurasian Arctic domain over each of the 47 glaciations since the intensification of Northern Hemisphere glaciation ∼2.74 Ma. We utilise this time-transgressive framework to review hypotheses regarding the heterogenous development of the Barents Shelf and the timing of key topographic reconfiguration episodes. Our results demonstrate that up to 2.6 km of bedrock was glacially removed to the shelf margins, and though the mean rate of erosion declines over the Quaternary, the efficacy of glacial erosion has a more complex timeline. Initially, erosion was highly effective as large expanses of the Eurasian Arctic switched from subaerial exposure to marine conditions around 2 Ma. Thereafter, erosional efficacy decreased as the landscape desensitised to successive glaciations but, after 1 Ma, it increased as a dynamic, marine-based ice sheet drained by ice streams expanded, selectively eroding large outlet troughs to the shelf edge. Critically for Arctic climate, at ∼0.69 Ma this episode of enhanced preferential erosion opened up the Barents Seaway establishing a new circulation pathway between the Atlantic and Arctic Oceans. Our 4D landscape reconstruction provides key boundary conditions for paleoclimate models and establishes a new framework for assessing the profound impact of late-Cenozoic glaciation on the Eurasian Arctic landscape.sic reservoir directly into the water column has been documented at the Sentralbanken high in the northern Norwegian Barents Sea. However, it remains unclear whether the hydrocarbon leakage occurs only from the middle-upper Triassic reservoir units in geological settings exceptionally conducive to hydrocarbon leakage, or if other reservoir formations contributed to the release of hydrocarbons into the water column. It is also not clear whether complete erosion of the caprock is a prerequisite for widespread liberation of natural gas and oil from glacially eroded reservoirs across Arctic continental shelves. Here we analyze multibeam echosounder data covering ∼5,000 km2 and a suite of high-resolution P-cable seismic lines from a range of geological structures across the northern Norwegian Barents Sea. Our analyses reveal that ∼21,700 natural gas seeps originate from exhumed, faulted and variably eroded structural highs bearing a range of Mesozoic reservoir formations. All investigated structural highs fuel seabed methane release hotspots with no exception. Evident from observations of seismic anomalies, fluid accumulations are pervasive in the subsurface and likely to continue fuelling seabed gas seepage into the future. We also document that gas seepage through faults piercing overburden, caprocks and reaching potential reservoir levels is pervasive at all investigated structural highs. On the Storbanken high and the Kong Karl platform, such fault-controlled seepage is more prevalent than seepage from reservoir formations subcropping below the seafloor. Using a simple parametrization approach, we estimate that seeps identified within our multibeam data coverage produce a seabed methane flux of 61 x 107 mol/yr (9,803 ton/yr), which is one to two orders of magnitude higher than other globally known submarine methane seepage provinces. Fluxes of methane from sea water to the air above the thermogenic gas seep provinces in the northern Norwegian Barents Sea remain to be determined.

Geological and glaciological controls of 21,700 active methane seeps in the northern Norwegian Barents sea

(Frontiers in Earth Science)

ABSTRACT Due to tectonic uplift in the Cenozoic and numerous shelf-wide glaciations during the Quaternary, ∼1–2.5 km of sedimentary overburden has been eroded from the Barents Sea shelf, leading to the exhumation and partial uncapping of hydrocarbon accumulations. 

Widespread natural gas and oil leakage from the glacially eroded middle-upper Triassic reservoir directly into the water column has been documented at the Sentralbanken high in the northern Norwegian Barents Sea. However, it remains unclear whether the hydrocarbon leakage occurs only from the middle-upper Triassic reservoir units in geological settings exceptionally conducive to hydrocarbon leakage, or if other reservoir formations contributed to the release of hydrocarbons into the water column. It is also not clear whether complete erosion of the caprock is a prerequisite for widespread liberation of natural gas and oil from glacially eroded reservoirs across Arctic continental shelves. Here we analyze multibeam echosounder data covering ∼5,000 km2 and a suite of high-resolution P-cable seismic lines from a range of geological structures across the northern Norwegian Barents Sea. Our analyses reveal that ∼21,700 natural gas seeps originate from exhumed, faulted and variably eroded structural highs bearing a range of Mesozoic reservoir formations. All investigated structural highs fuel seabed methane release hotspots with no exception. Evident from observations of seismic anomalies, fluid accumulations are pervasive in the subsurface and likely to continue fuelling seabed gas seepage into the future. We also document that gas seepage through faults piercing overburden, caprocks and reaching potential reservoir levels is pervasive at all investigated structural highs. On the Storbanken high and the Kong Karl platform, such fault-controlled seepage is more prevalent than seepage from reservoir formations subcropping below the seafloor. Using a simple parametrization approach, we estimate that seeps identified within our multibeam data coverage produce a seabed methane flux of 61 x 107 mol/yr (9,803 ton/yr), which is one to two orders of magnitude higher than other globally known submarine methane seepage provinces. Fluxes of methane from sea water to the air above the thermogenic gas seep provinces in the northern Norwegian Barents Sea remain to be determined.

The extreme yet transient nature of glacial erosion

(Nature Communications)

ABSTRACT Ice can sculpt extraordinary landscapes, yet the efficacy of, and controls governing, glacial erosion on geological timescales remain poorly understood and contended, particularly across Polar continental shields. Here, we assimilate geophysical data with modelling of the Eurasian Ice Sheet — the third largest Quaternary ice mass that spanned 49°N to 82°N — to decipher its erosional footprint during the entire last ~100 ka glacial cycle.

Our results demonstrate extreme spatial and temporal heterogeneity in subglacial erosion, with rates ranging from 0 to 5 mm a−1 and a net volume equating to ~130,000 km3 of bedrock excavated to depths of ~190 m. A hierarchy of environmental controls ostensibly underpins this complex signature: lithology, topography and climate, though it is basal thermodynamics that ultimately regulates erosion, which can be variously protective, pervasive, or, highly selective. Our analysis highlights the remarkable yet fickle nature of glacial erosion — critically modulated by transient ice-sheet dynamics — with its capacity to impart a profound but piecemeal geological legacy across mid and high latitudes.


Sometimes I create interactive maps…

Screenshot of the Icemap website showing a close view of the Eurasian ice sheet around the time of its maximum extent.

ICEMAP

An interactive reconstruction of the Eurasian ice sheet and its erosion potential during the last ice age

Screenshot of the Map Myths website showing a map of the world on a polar projection alongside famous cartographic mistakes.

Map myths

‘Map myths’ delves into the tales behind the cartographic myths, blunders and imaginations that shaped our view of the world during past centuries.

Screenshot of the Mercator's Arctic website, zoomed in on Mercator's historic map of the North Pole

Mercator’s view of the Arctic

In 1595 the Arctic was a vast unknown and full of mystery. Explore this interactive map prepared by the famous cartographer, Mercator – the first dedicated view of the Arctic from the golden age of cartography.

Screenshot of the Arctic Fog website showing a map of the route William Parry took on his discoveries of the Northwest Passage

How the Arctic was discovered

An interactive history through four centuries of exploration for the Northwest and Northeast passages.